
Efficient Code Generation from the High-level Domain-specific Language Feldspar
for DSPs

Gergely Dévai∗, Máté Tejfel∗, Zoltán Gera∗, Gábor Páli∗, Gyula Nagy∗, Zoltán Horváth∗,
Emil Axelsson†, Mary Sheeran†, András Vajda‡, Bo Lyckegård§ and Anders Persson§

∗Eötvös Loránd University, Budapest
Email: {deva,matej,gerazo,pgj,n g a,hz}@inf.elte.hu
†CSE Dept., Chalmers University of Technology

Email: {emax,ms}@chalmers.se
‡Ericsson Software Research

Email: andras.vajda@ericsson.com
§Ericsson

Email: {bo.lyckegard,anders.c-j.persson}@ericsson.com

Abstract—Software for digital signal processors (DSPs) is
traditionally highly hardware-dependent and hence porting it
to new processors usually requires significant design effort.
In this paper we present Feldspar (Functional Embedded
Language for DSP and Parallelism), an embedded, high-level,
domain-specific language for DSP algorithm design and the
compilation techniques we developed for generating C code
from specifications written in Feldspar.

While Feldspar allows description of algorithms on specifi-
cation level, we show that with the right set of abstractions
and transformations this high level, functional specification
can be transformed into C code that is comparable or better
than reference, hand-crafted C language implementations.
The Feldspar compiler is highly modular and plugin-based,
hence future hardware-specific plugins will enable automatic
generation of efficient, hardware-specific code. This approach
enables the encapsulation of knowledge of hardware completely
in the compiler and thus allows description of algorithms in
completely hardware-independent, portable manner.

I. INTRODUCTION

A. Motivation

In an industrial setting, Digital Signal Processing (DSP)
algorithms are implemented as highly optimized C or as-
sembly code on special purpose hardware platforms. The
production of this software involves painstaking manual
hand-crafting of code, and is expensive. In addition, the
resulting code is typically difficult to maintain and, in
particular, difficult to port to new platforms.

We propose a new domain-specific programming lan-
guage called Feldspar to tackle this problem. Feldspar
expresses DSP algorithms in a clean, abstract and hardware-
independent way. Initial experiments show that it is easier to
design and implement algorithms on this level of abstraction
compared to that of C or assembly.

Feldspar is a high-level domain-specific language. This
means that it was designed specifically for DSP algorithms,
taking into account the specific constructs of this field. It

expresses algorithms in an abstract declarative way instead
of using hardware-dependent low level constructs.

The interpreter of Feldspar is a lightweight tool to imme-
diately try out and test the code during the implementation
process. However, using this interpreter to run DSP algo-
rithms or even writing them in a general purpose functional
programming language (like Haskell [11]) and using its
compiler leads to unacceptable performance loss.

The compiler of Feldspar is designed to bridge the gap
between an abstract, easy to understand and hardware-
independent source program and a highly optimized target
code which makes use of the special features of the DSP
hardware.

B. An Embedded Domain-specific Language

Domain-specific languages are designed to capture the
common entities and constructs of a given problem domain.
Many DSLs has been developed for a variety of domains
from digital hardware design [3] to database queries [4].
Recently, work at the Pervasive Parallelism Lab at Stanford
has placed domain-specific languages at the core of the
search for solutions to the problem of enabling ordinary pro-
grammers to program multicore machines. The key element
of this approach is the restriction to well delimited, specific
domains [1].

DSLs are both extended and restricted compared to
general purpose programming languages: They have extra
features specific to the given problem domain making the
development easier, while their sets of language constructs
are limited, which enables more optimized compilation.

Designing new programming languages from scratch is
difficult and costly. Embedding [12] is a technology that
implements a new language in terms of an existing one,
called the host language. As a consequence, there is no
need for a lexer, parser or type checker as these tasks are
performed by the compiler of the host language. In case of

deep embedding, the language is defined as a library con-
sisting of functions not performing actual computation but
resulting in a data structure. The compiler of the embedded
language takes this data structure as input, manipulates it
and generates code in the target language.

Currently, Feldspar is an embedded language using
Haskell [13] as the host language. It provides two libraries
built on top of each other: the core language and the vector
library. The core language includes imperative-like con-
structs (loops for example) with pure functional semantics.
The vector library reimplements some of the standard list
functions to be able to transform them to a core language
program. During this transformation, the optimization tech-
nique called fusion is performed (see Section II).

The Feldspar compiler’s input is a core language program
represented as a graph. This graph is first transformed to
an abstract imperative program that is no longer purely
functional. Optimization transformations are performed on
this representation, which is finally pretty-printed with C
syntax.

C. History of the Feldspar Language

Development of the Feldspar language and compiler
was started in 2009 as a joint effort of Eötvös Loránd
University (Budapest, Hungary), Chalmers University of
Technology (Gothenburg, Sweden) and Ericsson. The first
public prototypes of the language and the compiler were
released in November, 2009 [9]. Simple DSP algorithms,
like autocorrelation with normalization, high- and lowpass
filters etc. were successfully implemented in Feldspar. The
compiler currently supports ANSI C code generation and
the results are comparable with hand-crafted reference im-
plementations.

D. Paper Structure

This paper is organized as follows. Section II presents
the Feldspar language frontend, the fusion technique and the
Haskell datastructure representing core language programs.
In Section III we describe the compilation of core language
programs to abstract imperative code as well as the opti-
mization transformations performed on that representation.
Hardware-dependent optimization techniques that we plan
to implement are also presented. Evaluation of results and
comparison with hand-crafted C code is documented in
Section IV; then Section V compares our achievements with
related work and a brief summary is given in Section VI.

II. LANGUAGE FRONTEND AND HIGH-LEVEL
OPTIMIZATIONS

The high-level library exported to the user is based around
the Vector data structure. Vectors can be manipulated
using functions similar to Haskell’s list operations. They can
also be treated as subscripted sequences, allowing programs
to be written in a style similar to mathematical formulas.

*Main> printCore sumSq
program v0 = v11_1

where
v2 = v0 - 1
v3 = v2 + 1
v4 = v3 - 1
(v11_0,v11_1) = while cont body (0,0)

where
cont (v1_0,v1_1) = v5
where

v5 = v1_0 <= v4
body (v6_0,v6_1) = (v7,v10)
where

v7 = v6_0 + 1
v8 = v6_0 + 1
v9 = v8 * v8
v10 = v6_1 + v9

Figure 1. Core program corresponding to sumSq

Here follows an example of a “list-like” program for com-
puting the sum of the squares of the numbers between 1 and
n:

sumSq :: Data Int -> Data Int
sumSq n = sum (map square (1 ... n))

where
square x = x*x

The first line is a type signature stating that sumSq
accepts an integer argument and gives an integer result.
The right-hand side of the definition should be read from
right to left. It starts by forming a vector containing the
elements from 1 to n. Next, each element is squared using
map, which is a general function for applying an operation
– in this case square – to each element in a vector. Finally,
the elements of the squared vector are summed. Note that
sumSq is expressed as a composition of subfunctions, each
one focusing on a single task. This style is typical for
functional programs.

While sumSq looks like a program that operates on
integer data, it is in fact a program generator (or macro) that,
when run, produces another program that computes the given
function. This second program is expressed in Feldspar’s
core language, which servers as the interface to the C
code back-end described in this paper. The printCore
command displays the core program resulting from a given
generator. The core program from sumSq is shown in
Figure 1.

The core language is a pure functional language, but it
only consists of low-level constructs that are fairly easy to
translate to a machine-oriented language. For example, the
program in figure 1 contains a while-loop which repeatedly
transforms its input using the body function until the
condition computed by the cont function becomes false.

The use of vectors in sumSq raises the worry that the
program might require excessive memory for the interme-
diate results. However, looking at the core output, we can

see that this is not the case. All variables (v0, v2, etc.) are
defined by simple scalar expressions. We can also see that all
vector operations have been “fused” into a single loop. This
efficient core program was obtained by a technique known
as deforestation or fusion [5].

Fusion techniques in functional languages are normally
implemented as source code transformations. In Feldspar,
we have taken a more direct approach to fusion, taking
advantage of the availability of the host language, Haskell, as
a macro language. The Vector type is defined as follows:

data Vector a =
Indexed (Data Length) (Data Ix -> a)

This definition says that a vector is essentially a pair (in
Haskell) of a length and a function mapping each index
to its element. This means that a vector is not a reference
to a block of elements in memory; it merely contains the
necessary information to compute such a memory block.

The trick here is to avoid computing the vector elements
until they are really needed. Many vector operations can
be defined by just manipulating the length and/or index
function. For example, here is the definition of map:

map f (Indexed l ixf) = Indexed l (f . ixf)

Thus, an operation of the form map f vec results in
a new vector, of the same length as vec, but with a
different index function. The new index function is simply
the composition of f and the previous index function ixf.
Note that map does not actually do any work. It just
alters the program at the macro level. Many functions from
Haskell’s standard list library can be defined in a similar
way.

The sum function can be defined using a for-loop:

sum (Indexed l ixf) =
for 0 (l-1) 0 $ \i s -> s + ixf i

In each iteration (indexed by i), the vector element at
index i is added to the running sum. The for-loop is also
a macro, in the sense that it translates into a while-loop in
the core language. This is the loop that we see in figure 1.

In the sumSq function, the vector (1...n) can be
defined as

(1 ... n) = Indexed n (+1)

Substituting square and (1...n) into the definition
of map, we get

map square (1 ... n) =
Indexed n (square . (+1))

This vector can now be substituted into the definition of
sum to yield

for 0 (n-1) 0 $ \i s -> s + (square . (+1)) i

Thus, in the final program, the vectors have completely
disappeared, and the index functions have been fused into
the body of the for-loop. Note that all of this happens
instantaneously while running the generator in Haskell.

Figure 2. Compiler structure.

Representing vectors by their index functions also has the
benefit of allowing a mathematical style of programming.
For example, a mathematical definition of map square a
might be

bi = ai ∗ ai, where i ∈ {0, N − 1}

This translates directly to the Feldspar code

b = Indexed (length a) $ \i -> (a!i) * (a!i)

III. COMPILATION AND LOWER LEVEL OPTIMIZATIONS

A. Compiler Structure

The previous section describes the first phase of the
compilation process, which results in a core language pro-
gram represented by a graph. The target language backend
produces C code from this intermediate representation. This
transformation consists of several distinct phases (see Fig-
ure 2).

The graph is first transformed to abstract imperative
code described in Section III-B. This transformation is not
complicated: local variable declarations can be generated
according to the nodes of the graph. The nodes representing
primitive operations, branches or loops are transformed to
corresponding programming structures in the abstract imper-
ative code. The transformation also takes care of initializing
and updating the loop states. This transformation yields an
unoptimized program which can already be pretty-printed in
C. The result is shown in Figure 3.

The unoptimized program is subject to further optimiza-
tion steps described in detail in Sections III-C and III-D.
These steps are implemented in a highly modular way being
plugins in a general architecture. Each plugin consists of an
analysis and a transformation routine.

Analysis determines whether the corresponding transfor-
mation step is applicable to specific parts of the program,
and collects semantic information. Each data structure has

polymorphic type. This enables attaching different semantic
information to the nodes of the program in case of different
optimization plugins. After having computed the necessary
informatiom, the actual modification of the code is per-
formed by the transformation step.

Both analysis and transformation steps need to walk
through the program tree and apply some kind of computa-
tion at each node of the tree. The plugin architecture offers
default functions for both of these activities. This means that
only the plugin specific functions have to be imlemented
in each plugin. This setup makes the development process
faster and code maintenance easier.

Finally, after the optimization steps, a pretty printer
is applied producing hardware-independent ANSI C code.
Hardware dependent optimization plugins will also be im-
plemented in the near future.

B. Representation of Imperative Programs

Core language Feldspar programs are first transformed to
an intermediate representation. This representation encodes
an imperative program in an abstract model, which allows
easy implementation of optimization transformations, while
it can be pretty printed in C in a straightforward way. This
representation will be referred to as abstract imperative code
in the rest of the paper.

The top level datastructure represents a function with its
input and output parameters and the program being the body
of the function definition. The body is represented by another
data structure consisting of local variable declarations and
instructions. Instructions are standard imperative constructs
like assignment, procedure call, sequence, if-then-else, while
and for loops. Figure 4 shows the Haskell representation of
the mentioned programming constructs.

The type system of this abstract imperative code is differ-
ent from that of C. A range of fixed size signed and unsigned
integer types with 8, 16, 32 and 64 bits width are used, as
well as fixed length arrays, floating point and boolean types.
Transformation of these types to C types depends on the
given platform.

In C, pointers and pointer operations are used to han-
dle parameter passing and arrays. This makes optimization
transformations more difficult to implement, therefore the
abstract imperative code abstracts away from the pointer
operations. For each parameter and local variable its logical
type and role (input parameter, output parameter or local
variable) are stored. The logical type and role define how
the parameter or variable will appear in certain positions
of the C code. These rules are implemented by the pretty
printer that converts the abstract imperative code to C.

C. Copy Propagation

Figure 3 makes it clear that core language Feldspar
programs and their translations to abstract imperative code
contain many variables to be eliminated. Copy propagation

void sumSq(signed int var0, signed int *out)
{

signed int var2;
signed int var3;
signed int var4;
signed int var11_0;
signed int var11_1;

var2 = (var0 - 1);
var3 = (var2 + 1);
var4 = (var3 - 1);
var11_0 = 0;
var11_1 = 0;
{

signed int var1_0;
signed int var1_1;
int var5;

var1_0 = var11_0;
var1_1 = var11_1;
var5 = (var1_0 <= var4);
while(var5)
{

signed int var6_0;
signed int var6_1;
signed int var7;
signed int var8;
signed int var9;
signed int var10;

var6_0 = var11_0;
var6_1 = var11_1;
var7 = (var6_0 + 1);
var8 = (var6_0 + 1);
var9 = (var8 * var8);
var10 = (var6_1 + var9);
var11_0 = var7;
var11_1 = var10;
var1_0 = var11_0;
var1_1 = var11_1;
var5 = (var1_0 <= var4);

}
}
(*out) = var11_1;

}

Figure 3. Unoptimized, genarated C code

is a well-known technique to replace occurrences of a
variable with the expression that was assigned to it. This
transformation may increase runtime performance, but it can
be disadvantageous, if multiple occurrences of a variable
get replaced with a large expression. To avoid these cases,
we used the following heuristics: a variable is eliminated if
either the expression assigned to it is cheap to compute (e.g.
a variable or a constant), or there is only one occurrence to
replace.

Besides this well-known technique, the Feldspar compiler
supports backwards propagation too. The following structure
is often present in programs compiled from Feldspar core
language:

data CompleteProgram
= CompPrg
{

locals :: [Declaration],
body :: Program

}

data Program =
Empty

| Primitive Instruction
| Seq [Program]
| IfThenElse

Variable
-- condition variable

CompleteProgram
-- then part

CompleteProgram
-- else part

| SeqLoop
Variable
-- condition variable

CompleteProgram
-- condition calculation

CompleteProgram
-- loop body

| ParLoop
Variable
-- counter

ImpLangExpr
-- number of iterations

Int
-- step

CompleteProgram
-- loop body

Figure 4. Haskell representation of programming constructs of the abstract
imperative code

{
// ...
var = expr;
// ...

}
out = var;

After checking that the transformation yields equivalent
code, the compiler propagates the out variable backwards
by replacing occurrences of var with it. The result is the
following code:

{
// ...
out = expr;
// ...

}

This technique becomes important when the eliminated
operation copies an array.

Applying both propagation transformations to the program
presented in Figure 3 results in the much more readable and
efficient program in Figure 5.

void sumSq(signed int var0, signed int *out)
{

signed int var11_0;

var11_0 = 0;
*out = 0;
{

while((var11_0
<=

(((var0 - 1) + 1) - 1))
)

{
signed int var8;

var8 = (var11_0 + 1);
var11_0 = (var11_0 + 1);
*out = (*out + (var8 * var8));

}
}

}

Figure 5. Result of copy propagation

D. Hardware-dependent Optimization Techniques

Before converting the program from imperative represen-
tation into final form ANSI C code, a number of different
hardware-dependent optimizations can be done. These al-
gorithmic transformations are part of the hardware-specific
backend of the compiler, so these techniques can vary be-
tween different hardware types. However, there are a number
of common techniques which can be utilized generally.

Note that whenever programmers port an algorithm to a
new platform, the following techniques are done by hand.
Feldspar is a tool which is designed to automatically deliver
the same optimizations letting the programmer focus only
on abstract algorithmic problems.

Partial loop unrolling is a key optimization implemented
by the Feldspar compiler. The well known trade-offs be-
tween speed and code size have different optima between
various hardware flavors. Most C compilers support this
optimization step to spare time-consuming jumps at run-
time. Feldspar uses this method in a more advanced way
to gain extra performance. Unrolling more iterations in one
loop body enables the exploit of on-chip parallelization
offered by most DSPs, if the number of internal execution
units of the processor are taken into account when unrolling
a loop.

The transformed code can be improved further by adding
the restrict keyword to the input parameters of func-
tions. This ensures the compiler that the pointers will not
alias each other, something which is automatically guaran-
teed by the Feldspar compiler.

We have future plans about giving guarantees of minimal,
maximal, multiplicative features of iteration numbers re-
ducing the number of condition evaluations. Feldspar could
also generate pragmas from this information to enable the

C compiler to produce more efficient code.
The instructions of an unrolled loop may be reordered and

grouped together to be replaced by hardware-specific intrin-
sics. Although these ruin the compatibility with ANSI C
standard, intrinsics are really important performance boost
factors of hand-optimization of DSP algorithms, so Feldspar
is already designed to support such hardware-dependent
transformations, and it will definitely implement them in
the future.

IV. EVALUATION AND RESULTS

A. Method of Comparison

The fastest DSP programs are always highly optimized
to a specific platform which they run on. Optimizations
often change the constructs and structure of the actual
implementation, that brings the source code away from the
original idea. The more optimizations were implemented
on the code, the less the programmer will catch the main
features of the algorithm. Without knowing these important
features, any further improvements or ports to a different
platform are risky both taking performance and functionality
into account.

Feldspar chooses a different approach. By using a com-
pact and intuitive functional language, the source code serves
the programmer’s understanding. The Feldspar compiler
tries to make all the usual optimizations automatically with-
out drawing the programmer’s attention away from abstract
algorithmic problems.

To test the performance of code compiled by Feldspar,
we will choose commonly used, small but easily measur-
able DSP algorithms as bases of our comparison. We will
take the abstract, high-level Feldspar code of the algo-
rithms and let the Feldspar compiler do all implemented
optimizations when creating ANSI C code. On the other
side of the comparison, we will choose ANSI C reference
implementations which will be identical in function to the
Feldspar versions. They are partially optimized hand-written
sources lacking hardware-specific optimizations to keep the
hardware-independence of examples on both sides. This
is necessary because Feldspar is currently fully hardware-
independent. Hardware-specific optimization is part of our
future work.

The Feldspar versions of the algorithms are far more
compact. First sight complexity comparison is impossible
because the Feldspar code only contains the core idea with-
out the usual implementation details. We should compare the
implementations via compiling both into machine-runnable
code and profiling them under normal circumstances. It is
important to use a C compiler which is capable of compiling
platform-optimized code to simulate behavior also used in
the industry. We call the C compiler each time with the same
parameters yielding the best optimizations to make sure that
ceteris paribus assumption is in place.

B. Comparison Details

Our chosen algorithms for the test are
• The convolution function almost identically taken from

the technical specification of 3GPP TS 26.073 V8.0.0
alias the Release 8 of the ANSI C code for the Adaptive
Multi-Rate (AMR) speech codec called by using 1000
samples.

• Standard matrix multiplication called by using 40x40
matrices respectively.

• Guitar overdrive sound effect made on a buffer consist-
ing of 1000 samples.

• Special pitch-shifter transform called octave up, done
on 1000 samples, derived from PSOLA method without
synchronization.

DSP algorithms almost never use dynamic arrays. Our
examples use fixed array sizes, and the experiments showed
that different buffer sizes yielded the same results.

Our target platform will be TMS320C64xx, a widely used
DSP architecture from Texas Instruments (the underlying
hardware architecture is discussed in [16]). The compiler
and profiler used are included in Code Composer Studio
Integrated Development Environment (IDE) Free Evaluation
Tools (FETs). In the comparison, this tool permits the study
of memory timing, cache size and other low-level features
of the target platform, which are all crucial in a real-world
simulation.

The measurements are done by the Code Composer Studio
default profiler tool. The programs are compiled without
debug information on the highest possible optimization level
(-O3) with maximum optimization (level 5) for speed. The
whole program optimization is switched on.

We have used the optimization engine of the Feldspar
compiler version expected to be released in the end of
February, 2010. Most of these optimizations were already
implemented in the first release of Feldspar launched in
November, 2009. Up-to-date Feldspar releases and all de-
tailed information about this comparison including source
code of test cases can be found at [9].

C. Results

The results in Table I and in Figure 6 show that the codes
generated by the Feldspar compiler in case of convolution
and matrix multiplication have similar performance to the
reference implementations. This means that Feldspar could
successfully take implementation details away from the
programmer.

The overdrive effect was optimized far better by Feldspar.
This is a huge success and an interesting case where the
programmer wanted to create a clean looking C implemen-
tation by keeping the formulas together in all branches.
The C compiler was unable to find and move the invariant
operation parts out of the branch scope. Feldspar has made
the unification of invariants easily because the high-level

Feldspar Reference
Convolution 1, 530, 511 1, 528, 516
Matrix Multiply 114, 608 114, 606
Overdrive 4, 012 15, 096
Octave Up 3, 019 1, 528

Table I
PERFORMANCE OF FELDSPAR GENERATED CODE AND REFERENCE

CODE IN CPU CYCLES

Figure 6. Ratio of Feldspar cycles per reference cycles

language allows thinking in a different way for both the
programmer and the compiler.

Octave up is the opposite case. The main difference
between the two versions is that they fill the output vector in
different styles. Feldspar follows the functional order where
the output buffer is written sequentially, while the reference
implementation parses the input buffer only once, writing
the output buffer in an interleaving fashion. It turns out
that the latter case is more cache friendly so the Feldspar
generated code gets a huge performance loss. Cache related
optimizations are quite hardware-specific, so there are no
such optimization constructs currently in Feldspar. However,
the plugin architecture makes it possible to implement such
optimizations easily.

We have seen a few other examples related to filtering
techniques which have some odd dataflow constructs. One
example was the lowpass filter in which Feldspar was unable
to eliminate some redundant data copies causing similar
performance losses like in the previous example. It indi-
cates that there are also hardware-independent optimizations
which can be implemented to further improve our code
performance.

One of the biggest challenges of our future work is to
learn from such examples and implement many optimization
methods.

The Feldspar compiler does not yet deploy all the possible
optimization transformations and it is currently platform in-
dependent, thus hardware-specific optimizations are not yet
implemented. We estimate that with the plugin architecture
of the compiler, all these optimizations can be automatically
generated. However, our compiler already performs well
against platform-independent reference implementations. We
would like to emphasize that the structure of the resulting
code is very much similar to the handwritten code, even

though it originates from a very different, compact and high-
level language. This is a strong indication that the compiler
is able to substitute most of the programmer’s optimization
efforts, as long as the high level-language has well defined,
restricted, domain-specific semantics.

V. RELATED WORK

The idea of translating high-level models into efficient
C programs and using architecture-specific, retargetable
backend optimizations is not new. It has been extensively
investigated previously in several researches [7], as well as
in a dedicated book on optimizing source code for data flow
dominated embedded software [8].

Bhattacharyya et al [2] describes the potential pitfalls
and problems of ANSI C source code generation for DSP
platforms, and they propose a sophisticated architecture
for such compilers. However, they implemented all the
components of a classical compiler (e.g. a lexical and syntax
analysis) but we could safely omit many of them. Their
graph-based internal representation can be considered sim-
ilar to the Feldspar core language, which is also optimized
before the code generation phase. Their design supports
mapping the internals to concrete machine instructions and
the paper addresses all the related problems (question of
parallelization, how to generate code that takes memory
access costs into account etc.) in details. In our case this
is future work.

Regarding the language design, there are other domain-
specific languages designed for composing programs for
special hardware and implemented in a functional language,
like Lava [3] and Obsidian [17] (both developed at Chalmers
University of Technology). Another relevant DSL in this
topic is SPL [19], the modeling language of SPIRAL [10].
Though the implementation of SPL is not connected to func-
tional programming, it describes digital signal processing
computations in a rather elegant way.

It is suggested [6] to augment a “host” programming lan-
guage (such as Haskell) with a domain-specific library, and
embed an optimizing compiler for it. As a consequence, the
host language acts as a powerful macro language for writing
program in the embedded language. We have followed the
same approach in the construction of Feldspar, but the code
generation is actually divided into two distinct phases, hence
there are a language frontend and a target language backend.

The generation of C programs is implemented in Haskell
both in interactive and standalone manner, available as
modules and as a binary executable. This compiler structure
is similar to Silage’s [18], a high-level language dedicated to
signal processing. In the Silage compiler, an abstract syntax
tree (in the form of a Lisp S-expression) in constructed
by the frontend and different backends produce different
types of output formats. The frontend is entirely created by
using standard tools (Lex and YACC), and the backend is
implemented in Common Lisp. Results for the C output are

similar to ours, although the Silage compiler is capable of
annotating the variables coming from the source program,
and simplifies the generated source better.

Since technically Feldspar is a higher-level programming
language that has been created for expressing algorithms
in an abstract, hardware-independent manner, one might
lose on the efficiency on the other hand. To achieve the
desired efficiency, the Feldspar compiler should include
more knowledge about the target platforms, more general-
and platform-specific optimizations.

Currently, the compiler framework introduced here does
not support optimizations specific to compilers of various
DSP chips. However, SPIRAL proposes a notable model
for code generation for different target platforms [15]. The
methodology employed in the model is based on exploiting
the domain-specific mathematical structure of algorithms
and implementing a feedback-driven optimizer. It offers
ideas on how to include new optimization techniques, im-
plementation platforms, and target performance metrics.

A different approach is taken in recent related work on
Embedded MATLAB [14], which is a subset of the MAT-
LAB language. MATLAB is a weakly dynamically typed
but high-level programming language. Embedded MATLAB
supports efficient C code generation for prototyping and
deploying embedded systems, and accelerating of fixed-
point algorithms. It also generates readable, efficient, and
embeddable C code from MATLAB’s M-code. Its C code
generator is capable of preserving all the function names
and comments (in the same position) of the original source
code, and all the variable names are the same except that
they are prefixed with eml_.

VI. SUMMARY

In this paper, we have presented compilation of Feldspar,
a domain-specific language for describing digital signal
processing algorithms. This language is embedded into the
functional programming language Haskell and we created
a compiler for it. At the moment, the compiler is capable
of translating from the internal representation of Feldspar
programs to ANSI C source code, while supporting several
compile-time optimizations.

Our contribution is to design and implement an architec-
ture for the backend that enables using optimization plugins.
Some of these optimizations are hardware-independent, and
some of them are applicable only on specific target plat-
forms. In our opinion, this might improve both the efficiency
and quality of the resulting code, so that the entire process
becomes customizable. To our knowledge, no other compiler
offers such functionality.

VII. ACKNOWLEDGEMENTS

We would like to acknowledge the financial support of
Ericsson Software Research, Ericsson Business Unit Net-
works and SSF (Sweden) as well as the Hungarian National

Development Agency (KMOP-2008-1.1.2). We would also
like to thank all those who contributed to this paper or to the
development of Feldspar with their comments, suggestions
and efforts in rewriting applications using Feldspar.

REFERENCES

[1] A. Aiken, B. Dally, and co–authors. Towards
Pervasive Parallelism, 2009. Slides presenting the
Pervasive Parallelism Lab. at Stanford, available at
http://ppl.stanford.edu/wiki/images/9/93/PPL.pdf.

[2] Shuvra S. Bhattacharyya, Rainer Leupers, and Peter Mar-
wedel. Software synthesis and code generation for signal
processing systems. In IEEE Transactions on Circuits and
Systems-II: Analog and Digital Signal Processing, pages 849–
875, 1999.

[3] Per Bjesse, Koen Claessen, Mary Sheeran, and Satnam Singh.
Lava: Hardware Design in Haskell. In ICFP ’98: Proceedings
of the Third ACM SIGPLAN International Conference on
Functional Programming, pages 174–184. ACM, 1998.

[4] Donald D. Chamberlin and Raymond F. Boyce. SEQUEL: A
structured english query language. In FIDET ’74: Proceed-
ings of the 1974 ACM SIGFIDET (now SIGMOD) workshop
on Data description, access and control, pages 249–264.
ACM, 1974.

[5] Duncan Coutts, Roman Leshchinskiy, and Don Stewart.
Stream fusion: From lists to streams to nothing at all. In ICFP
’07: Proceedings of the 12th ACM SIGPLAN International
Conference on Functional Programming, pages 315–326.
ACM, 2007.

[6] Conal Elliott, Sigbjørn Finne, and Oege de Moor. Compiling
embedded languages. In Proc. Semantics, Applications and
Implementation of Program Generation (SAIG 2000), LNCS,
pages 9–27. Springer-Verlag, 2000.

[7] Heiko Falk and Peter Marwedel. Control flow driven splitting
of loop nests at the source code level. In DATE ’03:
Proceedings of the conference on Design, Automation and
Test in Europe, page 10410, Washington, DC, USA, 2003.
IEEE Computer Society.

[8] Heiko Falk and Peter Marwedel. Source Code Optimization
Techniques for Data Flow Dominated Embedded Software.
Kluwer Academic Publishers, Dordrecht, The Netherlands,
2004.

[9] Feldspar. (Functional Embedded Language for DSP and
PARallelism), a domain specific language with associated
code generator, mainly targetting digital signal processing
algorithms. http://feldspar.sourceforge.net/.

[10] Daniel McFarlin Franz Franchetti, Frédéric de Mesmay and
Markus Püschel. Operator Language: A Program Generation
Framework for Fast Kernels. In Proc. IFIP Working Con-
ference on Domain Specific Languages (DSL WC), volume
5658 of Lecture Notes in Computer Science, pages 385– 410.
Springer, 2009.

[11] Haskell. An advanced purely functional programming lan-
guage. http://haskell.org/.

[12] P. Hudak. Modular domain specific languages and tools. In
ICSR ’98: Proceedings of the 5th International Conference
on Software Reuse, page 134, Washington, DC, USA, 1998.
IEEE Computer Society.

[13] Paul Hudak, John Hughes, Simon Peyton Jones, and Philip
Wadler. A history of haskell: being lazy with class. In HOPL
III: Proceedings of the third ACM SIGPLAN conference
on History of programming languages, pages 12–1–12–55.
ACM, 2007.

[14] The MathWorks Inc. Embedded matlabTMgetting started
guide, 2008–2009.

[15] Markus Püschel, José M. F. Moura, Jeremy Johnson, David
Padua, Manuela Veloso, Bryan Singer, Jianxin Xiong, Franz
Franchetti, Aca Gacic, Yevgen Voronenko, Kang Chen,
Robert W. Johnson, and Nicholas Rizzolo. SPIRAL: Code
generation for DSP transforms. Proceedings of the IEEE,
special issue on “Program Generation, Optimization, and
Adaptation”, 93(2):232– 275, 2005.

[16] Nat Seshan. High velociti processing [texas instruments vliw
dsp architecture]. IEEE Signal Process Magazine, 15(2):86–
101, 1998.

[17] Joel Svensson, Mary Sheeran, and Koen Claessen. Ob-
sidian: A domain specific embedded language for parallel
programming of graphics processors. In Implementation
and Application of Functional Languages, 20th International
Symposium, IFL 2008, 2008.

[18] Edward Wang. A compiler for Silage. Technical report, Com-
puter Science Division, University of California at Berkeley,
1994.

[19] Jianxin Xiong, Jeremy Johnson, Robert Johnson, and David
Padua. Spl: A language and compiler for dsp algorithms,
2001.

